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Abstract 

Pedelecs (e-bikes), which facilitate higher speeds with less effort in comparison to traditional bicycles (t-bikes), 
have grown considerably in popularity in recent years. Despite the large expansion of this new transportation 
mode, little is known about the behavior of e-cyclists, or whether cycling an e-bike increases crash risk and 
the likelihood of conflicts with other road users, compared to cycling on t-bikes. In order to support the design 
of safety measures and to maximize the benefits of e-bike use, it is critical to investigate the real-world behavior 
of riders as a result of switching from t-bikes to e-bikes. 

Naturalistic studies provide an unequaled method for investigating rider cycling behavior and bicycle 
kinematics in the real world in which the cyclist regularly experiences traffic conflicts and may need to perform 
avoidance maneuvers, such as hard braking, to avoid crashing. In this paper we investigate cycling kinematics 
and braking events from naturalistic data to determine the extent to which cyclist behavior changes as a result 
of transferring from t-bikes to e-bikes, and whether such change influences cycling safety. 

Data from the BikeSAFE and E-bikeSAFE naturalistic studies were used in this investigation to evaluate 
possible changes in the behavior of six cyclists riding t-bikes in the first study and e-bikes in the second one. 
Individual cyclists’ kinematics were compared between bicycle types. In addition, a total of 5092 braking events 
were automatically extracted after identification of dynamic triggers. The 286 harshest braking events (136 
cases for t-bike and 150 for e-bike) were then validated and coded via video inspection. 

Results revealed that each of the cyclists rode faster on the e-bike than on the t-bike, increasing his/her 
average speed by 2.9-5.0 km/h. Riding an e-bike also increased the probability to unexpectedly have to brake 
hard (odds ratio = 1.72). In addition, the risk of confronting abrupt braking and sharp deceleration were higher 
when riding an e-bike than when riding a t-bike.  

Our findings provide evidence that cyclists’ behavior and the way cyclists interact with other road users change 
when cyclists switch from t-bikes to e-bikes. Because of the higher velocity, when on e-bikes, cyclists appear 
to have harder time predicting movements within the traffic environment and, as a result, they need to brake 
abruptly more often to avoid collisions, compared with cycling on t-bikes. This study provides new insights into 
the potential impact on safety that a cycling society moving to e-bikes may have, indicating that e-cycling 
requires more reactive maneuvers than does cycling traditional bicycles and suggesting that any distractive 
activity may be more critical when riding e-bikes compared to traditional bikes.  

Keywords: cycling safety; naturalistic data; electric bicycle; braking; traffic conflict; road user interaction. 
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1. Introduction 

Pedelecs (e-bikes) are electric power-assisted bicycles that have become very popular in the past 

few years around the world, including China, Europe, Japan and the US (Fishman & Cherry, 2016). 

Many cities support the use of e-bikes as a means to reduce congestion and pollution (Ji, Cherry, 

Bechle, Wu, & Marshall, 2012)  and increase mobility (Dill & Rose, 2012; Fyhri & Fearnley, 2015), 

especially for older people and people with limited access to urban public transport (Weinert, Ma, 

Yang, & Cherry, 2008). Cycling on e-bike requires less effort than cycling on a traditional bicycle (t-

bike), enabling greater traveling distance and reducing the effects of such deterrents as wind or 

challenging terrain. 

In most countries, national regulations classify e-bikes as bicycles, so there are fewer restrictions 

associated with riding e-bikes compared to other motorized vehicles such as minimum age or 

mandatory licensing (Cherry, Yang, Jones, & He, 2016). Such regulations are generally based on 

maximum power of the motor (e.g., 250W in Europe and Japan) and maximum speed under power 

assistance (e.g., 25km/h in Europe, 32km/h in USA and Canada, 20 km/h China (Rose, 2012)) . 

However, there is little international consensus about which features of the e-bike should guide 

regulation of e-bike use or how these features relate to safety. 

Despite the large expansion of this new transportation mode, it is not yet known whether e-bikes 

change cycling behavior and whether cycling with an e-bike may increase crash risk and/or induce 

conflicts with other road users. Previous studies on e-bike safety have focused primarily on the 

impact of e-bike use on the transportation system (Cherry et al., 2016; Lee, Molin, Maat, & 

Sierzchula, 2015), differences in risk-taking behavior (Bai, Liu, Chen, Zhang, & Wang, 2013) or the 

risk of crashes requiring treatment at an emergency department (Schepers, Fishman, Den Hertog, 

Wolt, & Schwab, 2014). A few studies have investigated cycling behavior analyzing cycling speed. 

These include survey data (Weinert et al., 2008), controlled field trials (Vlakveld et al., 2015), or GPS 

and video surveillance measures along specific commuting routes (Cherry & He, 2009; Lin, He, Tan, 

& He, 2008). However, the methods used in these studies cannot provide an accurate picture of 

real-world cycling behavior: data from self-report surveys is subjective and may be questionable 
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(self-report data can be biased by factors such as social desirability), and studies limited to specific 

field trials or routes have limitations for generalizability.  

Naturalistic studies provide an unequaled method for investigating cycling behavior in the real world, 

where cyclists regularly experience traffic conflicts and may need to perform avoidance maneuvers, 

like hard braking, to avoid crashing. Using naturalistic data the cyclist’s real-world behavior can be 

investigated by assessing cycling kinematics (e.g., operating speeds of cyclists and speed 

distribution), near misses and conflicts. Unfortunately, naturalistic data have certain limitations which 

may bias results geographically and demographically. 

To date, only a few naturalistic cycling studies have compared cycling behavior on e-bikes versus t-

bikes (Dozza, Bianchi Piccinini, & Werneke, 2016; Langford, Chen, & Cherry, 2015; Schleinitz, 

Petzoldt, Franke-Bartholdt, Krems, & Gehlert, 2017).  Langford et al. (2015) used a US university 

campus bike-sharing fleet to investigate riding speed behavior. Their results suggested that e-

cyclists and traditional cyclist have a very similar riding behavior, although they found e-bikes faster 

than t-bikes on streets and t-bikes faster on shared-use paths. The study by Schleinitz et al. (2017) 

in Germany showed cyclists circulate faster on pedelecs (e-bikes) than on traditional bicycles. 

However, the results were inconclusive about effect of e-bikes on operating speed given that authors 

used a between subject design and the actual differences of the users populations of both type of 

bicycles might have biased the average speed values. The study of Dozza, Bianchi Piccinini, et al. 

(2016) in Sweden compared the ways e-cyclists and traditional cyclists interacted with other road 

users during critical events, suggesting that e-bike users travel faster and interact differently than 

traditional cyclists. In conclusion, the characteristics of cycling behavior have not been dealt with in 

depth and there is still some controversy with regard to whether riders behave differently when 

cycling on e-bikes compared to cycling on t-bikes and whether this difference has implications to 

safety.  

In this study, we compare cycling behavior on e-bikes and t-bikes by analyzing cycling kinematics 

and braking events at individual level to determine 1) the extent to which cycling behavior changes 

in switching from t-bikes to e-bikes, and 2) whether such changes influence cycling safety. We 

analyzed data from the same cyclists using both e-bikes and t-bikes, collected in two different 
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naturalistic cycling studies. Since speed has been shown to be  associated with road safety (Elvik, 

Christensen, & Amundsen, 2004; Milliken et al., 1998), we analyzed speed profiles to characterize 

individual and overall cycling behavior on these two types of bicycles. Further, as braking is one of 

the main avoidance maneuvers when cycling (Maier, Pfeiffer, Wehner, & Wrede, 2015), this study 

investigated braking events as to determine whether e-cyclist brake differently or for different 

reasons than traditional bikers. By understanding speed profile and braking behavior our aim is to 

generate estimates of risk for comparing the two bicycle types. 

2. Methods 

2.1. Naturalistic data 

The naturalistic cycling data used for this study were collected in Gothenburg in two studies: 

BikeSAFE in 2012 (Dozza & Werneke, 2014) and E-bikeSAFE in 2013 (Dozza, Bianchi Piccinini, et 

al., 2016) which employed traditional bicycles (t-bikes) and pedelec bicycles (e-bikes), respectively. 

All the data came from participants who had given consent for reusing data in future studies. In order 

to facilitate comparisons between the two studies and to control for sample bias, in both studies the 

same types of data were collected using the same equipment and the same participants at the same 

time of year. For this paper we analyzed the data from the six cyclists who completed both studies 

(Table 1) providing two weeks of data each cyclist for each study. These six cyclists were regular 

riders and contributed 28.5 hours of cycling data from t-bikes and 32.5 hours from e-bikes.  

Table 1. Demographics of the Participants 

ID Age* Group Age† Gender 

1 50 Middle-aged Female 

2 50 Middle-aged Female 

3 45 Middle-aged Female 

4 28 Young (<40) Female 

5 35 Young (<40) Male 

6 45 Middle-aged Male 
*Ages referred to year 2013; †'middle-age' definition retrieved from https://www.collinsdictionary.com/dictionary/english/middle-age 

2.2 Bicycle instrumentation 

Each bicycle was specially equipped with a GPS, two inertial measurement units (IMU - one on the 

frame and one on the handlebar), two brake sensors (one for each wheel), one forward facing video 

camera and a data logger which recorded data from all sensors (Figure 1). The e-bikes were also 

https://www.collinsdictionary.com/dictionary/english/middle-age
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instrumented with a motor (250 W), a control unit, two brake switches, a throttle (only active up to 6 

km/h in accordance with European regulations), and a rechargeable battery (Figure 1). Data from all 

sensors were collected at a 100 Hz sampling frequency, except for the GPS (10 Hz) and camera (30 

fps). 

 
Figure 1. A: Traditional bicycle installation from BikeSAFE. B: Electric bicycle installation from e-bikeSAFE. Source:(Dozza, 
Werneke, & Mackenzie, 2013). 

2.3 Analysis of Cycling Kinematics 

Differences in cycling kinematics between the two types of bicycles were assessed by studying the 

operating speeds and speed distributions both at an individual level (cyclist) and overall for the two 

types of bicycle (following the approach of Dozza, Werneke, & Mackenzie (2013)). The time spent 

below 5km/h (speed value close to the stability limit for a bicycle) and above 30km/h (speed limit for 

bicycles in Sweden) were also computed with regard to stability limits in cycling behavior and 

Swedish regulations. Paired 2-tail t-tests verified whether the average kinematics for the two types 

of bicycles were different.  

2. 4 Analysis of Braking Events 

2.4.1 Identification of Braking Events   

Bicycle crashes or near-crashes often happen during braking events; further, during routine cycling, 

braking is often necessary as an evasive action to respond to unexpected threats. Thus, if cycling 

kinematics indeed differ between t-bikes and e-bikes, we would expect to find the largest effect on 

safety during such braking maneuvers. Braking events were identified following the method used by 
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Johnson et al. (2015) combining analysis of brake pressure (front and rear), braking activation (from 

switches on e-bikes only), velocity and longitudinal acceleration from the bicycles. Figure 2 shows 

an example of the data collected during braking events.  

       

Figure 2. Example of braking. 2a-left) Video Acquisition example; 2b-right) Velocity, brake pressure and deceleration during 
braking event. 

The beginning of each braking event was defined as the time at which acceleration became negative 

(less than -0.015m/s2) following an initial velocity higher than 10 km/h, or when the cyclist activated 

one of the two brakes for at least a 0.4 second duration. Braking ended when the longitudinal 

acceleration became positive again, or when the cyclist released the brake(s). In some cases, the 

cyclists activated the brake(s) intermittently within a given braking maneuver. Such short activations 

were concatenated into a single braking event after video validation of one maneuver. 

2.4.2 Selection of the harshest braking events 

The harshest braking events - those characterized by higher decelerations and stronger braking 

pressure - for each cyclist in both datasets were validated by video analysis. To avoid possible bias 

from over representation of certain cyclists having more braking events, we aimed to balance the 

number of braking events included for each cyclist and bicycle type. Thus, the harshest braking 

events were selected among those with highest deceleration per cyclist and type of bike, without 

setting a threshold. To achieve a high sensitivity in recognizing braking events and to facilitate video 

validation, sensor data was checked for quality, filtered and synchronized with the video footage 

before coding.  As is common with naturalistic data, not all events were captured with a complete 

data set (i.e. with all sensors working and sufficient lighting for video coding). Consequently, the 

number of events for each subject varied in the final data analysis. 
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2.4.3 Event Coding 

Video segments for the braking events were 30 s long, including 25 s before the start of the braking 

event and 5 s after. Each braking event was validated and coded by one expert analyst, who 

discussed the uncertain events jointly with a second senior rater before coming to a final 

assessment, following a procedure similar to that used in other naturalistic studies (Carney, 

McGehee, Harland, Weiss, & Raby, 2015; Klauer, Dingus, Neale, & Sudweeks, 2006; Schleinitz et 

al., 2017). Videos were reviewed to code the manoeuver expectancy and the environmental 

characteristics (Table 2). Manoeuver expectancy identified whether braking was the consequence 

of a planned behavior to pro-actively regulate speed—planned braking—or, on the contrary, was the 

reaction to avoid a collision due to a threat or conflict with other road users or obstacles—unplanned 

braking.  Our analysis followed the internationally accepted definition of traffic conflict of  Amundsen 

& Hydén (1977, p. 135): ‘A traffic conflict is an observable situation in which two or more road users 

approach each other in space and time to such an extent that there is a risk of collision if their 

movements remain unchanged’. Planned braking events were coded according to the scenario in 

which the proactive behavior occurred (curve, lane narrowed, expected stop where there is not the 

right of way… see more in Table 2). Unplanned braking events were further coded by risk level and 

by type and approach direction of the threat. Coding of a conflict situation for risk  level followed 

criteria similar to those used in the conflict observation technique "DOCTOR” (Grayson, Hyden, 

Kraay, Muhlrad, & Oppe, 1984; Van Der Horst, De Goede, De Hair-Buijssen, & Methorst, 2014), so 

traffic conflicts were identified with   but using two levels (low and high) instead of five to avoid diluting 

the braking events.. The classification of ‘low risk’ is attributed to any anticipatory preventive behavior 

upon perceiving a potential conflict (‘slow conflicts’ according to DOCTOR method) and a ‘high risk’ 

rating is assigned to serious conflict ‘with a more direct link with traffic safety” (Van Der Horst et al., 

2014, p361). The level of risk is determined by objective aspects of the conflict situations like 

distance between the cyclist and the threat at the onset of the braking, bicycle speed, and other 

factors such as category of opponent road-users and environmental characteristics. 

In an effort to verify the consistency and reliability of coding of traffic conflicts, all the braking events 

from one random cyclist were coded twice, in two sessions 10-days apart to assess the intra-rater 
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reliability. It is worth noticing that, during this coding bicycle type was blind to the rater. The 

consistency of the video coding was tested using Cohen's kappa for the manoeuver expectancy and 

for ratings of risk level. 

Table 2. Variables coded for braking events 

All braking events – Conflict 

Expectancy unplanned or planned 

 Unplanned braking events  

 Risk level   low (threat present) or high (serious conflict) 

 
Threat type  car, cyclist, pedestrian, heavy-vehicle, motorcycle/moped, animal, or other 

 Threat approach direction  opposite, left, right, or same 

 Planned braking events  

 Scenario curve, lane narrows, expected stop, crossing cycle lane/urban road, or other 

All braking events - Environment  

Road type 
urban road, cycle lane, cycle crossing, sidewalk, or parking lot 

Road gradient  flat, downhill, or uphill 

Surface type  earth, asphalt, concrete, wood, cobblestone, or undetermined 

Light condition  daylight, night (lighted & non lighted), or dawn/dusk 

 

2.4.4 Kinematics of Braking Events 

Bicycle velocity at the onset of the braking and deceleration during the braking event were analyzed 

to provide a quantitative assessment of cyclist behavior during hard braking events. 

2.4.5 Statistical Analysis of the Coded Variables 

Odds ratio (O.R.) with 95% confidence intervals (C.I. 95%) were used to determine the association 

between bicycle type and each of the following coded variables: maneuver expectancy, risk level, 

threat type and planned braking scenario. For the odds ratio analysis, the original categorical 

variables were recoded as sets of dichotomous variables. In addition, Pearson’s chi-square test was 

used to assess whether the effect of threat approach direction or environmental variables were 

different across bicycle type. Finally, the effect of bicycle type and maneuver expectancy on braking 

kinematics (speed and deceleration) was measured by ANOVA. To meet the requirements for 

normality and homogeneity of variance for ANOVA analysis (verified with Kolmogorov-Smirnov and 

Levene tests), a square root transformation was applied to the variable deceleration before the test. 

Significance levels for all tests were set at p< .05. 
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3. Results  

3.1 Cycling kinematics 

All cyclists rode faster on e-bikes than on t-bikes, increasing their average speed by 1.5-5.0 km/h, 

corresponding to 7-31% range in increased speeds (Table 2) and this result was statistically 

significant (p=.001). When riding e-bikes, cyclists spent less time traveling at speeds below 5 km/h 

and more time at speeds above 30 km/h compared to riding t-bikes (Table 3). The six cyclists 

included in this paper were naturally divisible into two groups: one included cyclists who rode below 

the overall average speed (ID 1-3 in Table 2) and one included cyclists who rode above the average 

speed (ID 4-6 in Table 3). Note that the group assignments were the same for each cyclist regardless 

of bike type, suggesting that this division into groups is indeed related to individual cyclist behavior 

and was not a statistical artifact. 

Table 3. Speed and duration per cyclist 

Cyclist  
ID 

t-bike speed 
[km/h] 

e-bike speed 
[km/h] 

(%)speed<5km/h 
t-bike vs e-bike 

(%)speed>30km/h 
t-bike vs e-bike 

t-bike data 
[min] 

e-bike data 
[min] 

1 13.0 ± 8.3 15.9 ± 7.8 19.2% vs. 12.4% 2.3%   vs. 3.3% 382 274 

2 13.7 ± 11.0 17.9 ± 8.3 27.3% vs. 12.6% 6.7%   vs. 2.4% 98 230 

3 14.0 ± 6.7 18.1 ± 6.7 10.1% vs. 5.7% 1.5%   vs. 3.6% 595 341 

4 19.6 ± 9.0 21.1 ± 9.1 8.6%   vs. 5.9% 7.0%   vs. 8.10% 283 283 

5 19.7 ± 8.5 23.9 ± 6.1 2.8%   vs. 3.0% 5.2%   vs. 6.1% 216 397 

6 20.3 ± 9.3 25.3 ± 9.0 11.3% vs. 3.0% 12.4% vs. 25.0% 135 424 

Average 16.7± 8.4 20.4± 7.8 13.3% vs. 7.0% 5.8%  vs. 8.1% 285 325 

 
Figure 3 presents the overall speed distributions for traditional and electrical bicycles (3A), together 

with the speed distributions for individual cyclists by speed group (3B-C). Figure 3A also includes 

the standard deviation (SD) calculated for every step of the speed distribution, showing that as speed 

increases the standard deviation become smaller for e-bikes. 
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Figure 3. Proportion of time cycling at different speeds (0.25km/h steps) for t-bikes and e-bikes. 

3.2 Braking events 

A total of 5092 braking events were initially detected using dynamic triggers: 2433 of these were 

from t-bikes and 2659 from e-bikes. Two datasets of similar size were created respectively for t-

bikes and e-bikes (respectively 136 and 150 events). The events were selected among the braking 

events with the sharpest decelerations, to have a uniform distribution across the participants and not 

to bias the results. All events in the dataset were next coded via video inspection. Intra-rater reliability 

analysis with a subset of 19 braking events indicated high consistency for the coding; for braking 

expectancy Cohen’s kappa was 0.872 (p < .001) with only one case not consistent due to poor light 

conditions of the scene, and for the risk level coding Cohen’s kappa was 1.0 (p= .008) what means 

total agreement.   

Figure 4 shows the geographic distribution of braking events, color coded by bicycle type (Figure 

4A) and maneuver expectancy (Figure 4B).  In all, 195 braking events were planned, and 91 were 

unplanned.  
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Figure 4. Spatial distribution of the braking events (Gothenburg) by type of bicycle (A) and by braking expectancy (B). This 
map is from Google Earth provided by DigitalGlobe and CNES/Astrium. 

Although the dataset was a selection of the harshest braking events, for each cyclist the majority of 

braking events were planned, and this finding was independent of bicycle type (Table 4). As Table 

4 shows, neither the group (slow vs. fast cyclist) nor the type of bicycle was a predictor for actual 

number of braking events extracted from the dataset, providing confidence that there was no bias in 

the distribution.  

3.3 Unplanned and planned braking events 

Table 4 lists the number of braking events by bicycle type (planned + unplanned) and the 

proportionate representation of unplanned braking events by subject and overall. Unplanned braking 

events happened more often on e-bikes than on t-bikes in the overall (O.R. 1.72) and for all six 

cyclists individually. This result also minimizes the possible effect of the uneven distribution of the 

sample.  

Table 4. Number of braking events and prevalence of unplanned braking events per cyclist. 

Cyclist Group of t-bike               e-bike 

ID Cyclist Total Unplanned   Total Unplanned 

1 Slower 31 26.9% 37 32.4% 

2 Slower 11 21.9% 26 30.8% 

3 Slower 26 23.5% 34 36.4% 

4 Faster 32 32.3% 13 32.4% 

5 Faster 19 21.9% 7 30.8% 

6 Faster 17 26.3% 33 57.1% 

Total  136 25.5% 150 36.7% 

In the subset of unplanned braking events, the prevalence of high risk level showed more than two 

times more likely riding e-bikes than t-bikes. Though, the numbers are too low to report true statistical 

significance (Table 5). Concerning the threat type, for both t-bikes and e-bikes, car posed the most 

prevalent threat followed by cyclists and pedestrians, which had a similar prevalence. The 
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prevalence of cyclist as threat is 9.8% higher cycling e-bikes, on the contrary the proportion of cars 

as threat is 8.2% lower, however these differences were not statistically significant (Table 5). The 

scenario in which the subset of planned braking events occurred was not different across bicycle 

type (Table 5). 

Table 5. Prevalence and odds ratios by category.   
Coding t- bike e- bike O.R. (95% C.I.) 

All braking events – Expectancy N=136 N=150  
Unplanned* 25.7% 37.3% 1.72 (1.04-2.85)* 

 Unplanned - Risk level N=35 N=58  

 High risk 14.3% 29.3% 2.49 (0.83 -7.49) 

Unplanned -Threat type  N=35 N=58  

Car 48.6% 40.4% 0.64 (0.27 – 1.50) 

Cyclist 17.1% 26.9% 1.61 (0.55 - 4.68) 

Pedestrian 22.9% 23.1% 1.18 (0.39 - 3.55) 

Truck/Bus 0.0% 7.7% -- 

Motorcycle 5.7% 0.0% -- 

Animal 2.9% 0.0% -- 

Other 2.9% 1.9% -- 

 Planned - Scenario N=101 N=92  

 Turning/Crossing 23.8% 34.0% 1.66 (0.89 – 3.10) 

 Curve 37.6% 26.6% 0.60 (0.33 – 1.11) 

 Expected Stop 23.8% 24.5% 1.04 (0.54 – 2.00) 

 Lane narrows 5.0% 6.4% -- 

 Threat/Road User 3.0% 2.1% -- 

 Other 6.9% 6.4% -- 
*statistically significant when 1.0 does not fall within the 95% C.I. 
(--) statistics missing due to insufficient number of data for the analysis 

 
Threat approach direction could not be analyzed as a single grouped variable because not all threats 

interact with cyclists in the same way. Thus, the effect of threat approach direction was analyzed 

separately by the three threats that together represented approximately 90% of all the road conflicts: 

car, cyclist, and pedestrian. Table 6 shows that t-bikes had more unexpected events with car coming 

from left than e-bikes, however e-bikes had cars coming from left and right in similar proportion. 

Threats from opponent cyclists traveling along same direction were overrepresented in the e-bike 

condition.  

Table 6. Threat direction distribution for cars, cyclists and pedestrians.  

  Threat 
approach 
direction 

          car*                 cyclist          pedestrian† 

t-bike 
N=17 

e-bike 
N=21 

t-bike 
N=6 

e-bike 
N=14 

t-bike 
N=8 

e-bike 
N=12 

left 56% 38%  17% 7% 43% 33% 

right 6% 48% 0% 0% 0% 50% 

same 13% 14% 17% 57% 43% 0% 

opposite 25% 0% 67% 36% 14% 17% 

* Significant: p<.05;  † p=.053 from chi-square test   
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Finally, the effect of environmental characteristics was not different between e-bikes and t-bikes with 

the exception of light conditions (Table 7), in which night condition were more prevalent for t-bikes. 

Table 7. Environment factors prevalence.  

environment  t-bike vs e-bike p (chi-square) 

Type of Road 
cycle lane (41% vs 39%), urban road (29% vs 27%), cycle crossing 

(23% vs 31%), parking lot (3% vs 3%), other (4% vs 0%)  0.820 

Type of Surface 
asphalt (84% vs 95%), cobblestone (11% vs 3%), concrete (4% vs 

0%), earth (0% vs 2%), wood (1% vs 0%) 0.085 

Road Gradient flat (71% vs 68%), down (29% vs 30%), up (0% vs 3%) 0.205 

Light condition* 
daylight (46% vs 59%), dawn/dusk (4%, 20%), night (lighted & 

non lighted) (50% vs 22%) 
  0.000* 

* Significant at p<.05. 

3.4 Kinematics of braking events 

Deceleration was higher for e-bikes than for t-bikes (p=.017; Table 8). Deceleration was also higher 

for unplanned versus planned braking events, however this difference was not statistically significant 

(p=.078). 

Table 8. Mean, standard deviation, and p from the ANOVA analysis for maximum deceleration and speed preceding the 

braking events. 

 Planned Unplanned p t-bike e-bike    p 

Deceleration (m/s2)* 1.8 ± 0.94 2.0 ± 1.21 0.078 1.7 ± 1.01  2.0 ± 1.05   0.017* 

Speed (km/h)  20.5± 6.7 21.6± 7.3 0.629 20.8 ± 7.9 21.0 ± 6.3  0.402 

* Significant at p<.05. 

There was no significant difference in speed between bicycle types (p=.629) nor was there between 

planned and unplanned events (p=.402). In addition, no interaction was found between the factors 

type-of-bicycle and maneuver-expectancy for either deceleration (p=.555) or velocity (p=.151).  

 4. Discussion 

The aim of this research was to determine whether cycling behavior changes when cyclists switch 

from t-bikes to e-bikes and to assess how these changes may increase crash risk or induce conflicts 

with other road users. Using naturalistic data, we analyzed cyclist behavior across individuals and 

between bicycle type, comparing operating speed and the risk of facing traffic conflicts after video 

coding of the harshest braking events. Because the analysis was at an individual level, the effect of 

type of bicycle on behavior was directly comparable minimizing participant bias. Similarly, since 

cyclists used the same routes for both naturalistic studies, the data may not suffer from route bias. 

In addition, there were no differences in the environmental factors (type of road, slope, etc.) on 
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braking events, except for ambient lighting conditions between the two naturalistic studies. Even 

though both studies were conducted in the fall, the e-bike data collections occurred in lighter 

conditions because in that season in Sweden daylight duration changes markedly from one month 

to another. Nevertheless, the fact that speed values preceding the braking events were similar for 

both bike (and thus lighting) conditions suggests that ambient light levels did not affect riding 

behavior. 

4.1 Cyclists ride faster on e-bikes than on t-bikes 

The most notable finding to emerge from this study was that each of the six participants without 

exception increased the speed between 1.5 and 5.0 km/h moving from t-bikes to e-bikes. This 

corresponds to an overall average speed increase from 16.7 to 20.4 km/h (increase of 22% in 

average). Similarly, speed differences on t-bikes compared to e-bikes were found in China along 

specific commuting routes by Cherry & He (2009) using GPS (11.1 vs.  14.7 km/h) and by Lin et al. 

(2008) with a video surveillance application (14.8 vs. 21.8 km/h), and in Germany by Schleinitz et 

al., (2017) in a naturalistic study (15.3 vs. 17.4 km/h). In these three studies, bicycle type was 

compared using a priori user groups riding their own bicycles, which limits generalizability of results 

to different user groups. We also found a rising trend to exceed speed legal limits of 30 km/h (for 

Sweden) when riding e-bikes. This differs from the results of Schleinitz et al. (2017) who found 

speeds higher than 25 km/h only for the S-pedelec (which provides support up to 45 km/h) and not 

with the e-bike. Lin et al. (2008) studying circulation in bicycle-exclusive lanes in China, also found 

that e-bike riders more frequently exceeded the speed limit of 15 km/h stipulated by law. Our findings 

including the smaller standard deviations found for e-biking at high speed, provide strong evidence 

that e-bikes condition cycling behavior and encourage cyclist to reach higher speeds. 

In addition, the results comparing operating speed reveals that different profiles in cycling behavior 

exist, including two groups for our study: one faster and one slower. Thus, despite the small sample 

size, this provides evidence that overall, different types of cyclists are prone to increasing their 

average speed when riding e-bikes. Lin et al. (2008) obtained similar results in a study on commuting 

routes in China comparing e-bike and t-bike cyclists. Authors found overall higher average speeds 

for e-bike cyclists and differences across demographic groups: younger cyclists were faster than 
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elderly ones and males were faster than females. Likewise, Vlakveld et al. (2015) found in their 

controlled field trials that elderly cyclist were lower than middle aged cyclists with both type of 

bicycles. This influence of age and gender agrees with the behavior of our groups: the slower group’s 

composition was three middle-aged women and the faster group was made up of two men (one 

young and another middle-aged) and a young woman. The picture was less clear in previous 

naturalistic studies that did not include intra-subject comparisons of bicycle type, which this study 

does. Using a sample primarily composed of university students in the US, Langford et al. (2015) 

identified separate faster and slower groups for t-bikes but not for e-bikes, for which speed was more 

homogeneous. In the German study, Schleinitz et al., (2017) showed that riders characterized by 

lower average speeds, such as older cyclists, are less given to increasing operating speed on e-

bikes. The maximum age of our participants was 50 years, so extending our finding to elderly cyclists 

would require further research. However the trend suggests that speed increases would still exist 

though by a smaller amount. Even a small increase in operating speed may make elderly people 

susceptible to increased crash risk. In fact elderly drivers react more slowly to hazards due to 

reductions in attentional, reflexive and visual capacities (Horswill et al., 2008), and in complex traffic 

situations elderly cyclists experience a higher mental workload (Vlakveld et al., 2015). 

The demographics of the users of e-bikes is a key to understanding the impact of e-bike use on 

traffic safety. Studies from different regions showed clear differences in e-bike user profiles. On 

average user groups in Netherlands and Japan are elderly, in North Americans and Australians user 

age ranges around 40-60 years, and Chinese users tend to be younger (Lee et al., 2015). More 

demographic research is needed to determine regional e-bike user profiles, and to track changes in 

e-bike user population as they become more popular as low-cost alternatives for personal mobility.  

4.2 Cycling with e-bikes requires more reactive maneuvers than with t-bikes 

The second main finding from this research revealed that riding e-bikes increases the probability of 

having to perform unexpected hard braking in response to threats or traffic conflicts. In addition, the 

risk level of a conflict during unplanned braking was more often high when riding an e-bike than 

when riding a traditional bicycle (29% vs.14%). These differences seem to be related to the 

probability of all cyclists to ride faster on an e-bike.  
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On the one hand, speed is related to information processing. Higher speed means shorter time 

window for visual scanning, predicting traffic patterns and reacting; thus increasing the potential for 

conflicts. This is critical in unexpected events where the amount of information to be processed 

increases drastically. Consequently, higher speed may convert a typical low risk traffic conflict in a 

high risk conflict. On the other hand, differences in operating speed affect interactions with other 

road users due to underestimation of e-bike. Other road users׳ underestimating e-bike speed is one 

of the most common causes of traffic conflicts (Dozza, Bianchi Piccinini, et al., 2016; Haustein & 

Møller, 2016; Johnson et al., 2015), because of the similarity in appearance to t-bikes and the lack 

of previous direct experience with e-bike behavior, and the lower pedaling frequency necessary to 

reach same speed compared to t-bikes (Petzoldt, Schleinitz, Krems, & Gehlert, 2017). Furthermore, 

we found that instances of unexpected braking in relation to other cyclists riding along same direction 

were overrepresented in the e-bike condition. The sample size of cyclists as a threat was small (6 

cases for t-bikes and 14 for e-bikes respectively), but the results agree with those of Dozza & Bianchi 

Piccinini (2014) who found that e-cyclists reported a tendency to overtake other cyclists more 

frequently compared to when riding a t-bike. The results also supports the finding of Hauer (1971) 

that stated that circulating faster or slower than the median of other road users (t-bikes in the case 

of cycle lanes) increases the risk of conflicts due to overtaking.  

Our results, together with the previous findings, suggest that e-bike cyclists exploit the different 

kinematic conditions (i.e. higher average speed and decelerations) to implement a different riding 

behavior. As a consequence they engage in unexpected braking more often during overtaking 

because they attempt to pass the cyclists without first decreasing speed during the decision and 

preparation phases (Dozza, Schindler, Bianchi-Piccinini, & Karlsson, 2016). Although the 

relationship between collisions and traffic conflicts is complex, several studies have found positive 

relationship between near misses or traffic conflicts and crash risk (Dingus, Hetrick, & Mollenhauer, 

1999; El-Basyouny & Sayed, 2013; Guo, Klauer, Hankey, & Dingus, 2010). Accordingly, in our safety 

analysis, we have used traffic conflicts as surrogates for collisions to estimate risk. The results 

suggest that riding e-bikes may increase the risk of collision since conflicts are more frequent when 

riding e-bikes than traditional bicycles. 
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4.3 Differences in speed and deceleration during braking events  

E-bikes in general terms showed higher risk of confronting braking with sharp braking (i.e. higher 

deceleration). It is worth noting that, the added weight of the electric battery in e-bikes may play a 

role in a higher risk of losing control during braking. The values of deceleration presented for the 

unplanned events (mean: 2 m/s2; SD: 1.2) can be used as reference in identification of unexpected 

scenarios demanding braking maneuvers. These values also may be contrasted with other 

naturalistic studies for powered two wheelers like scooters (Baldanzini, Huertas-Leyva, Savino, & 

Pierini, 2016) that identified patterns related to hard braking with decelerations higher than 2 m/s2. 

Contrary to our expectations, speed at the onset of the hard braking events was similar for both e-

bikes and t-bikes. Consequently we interpret the finding that the unexpected braking events are 

more frequent in e-bikes as a result of the higher probability of sustained travel within the critical 

range of speed (average of 21km/h in our study), rather than just the probability of reaching higher 

peak velocities. 

4.4 Methodological considerations and future research 

Participants were selected from a list of volunteers available at SAFER. The list includes researchers 

active in projects related to traffic safety; however the participants were not aware of the hypotheses 

of this paper, and the extent to which their behavior deviated from an average cyclist because their 

profession is unknown. Further, some of the participants did not have previous experience with riding 

e-bikes. It may, therefore be that they were more cautious riding, especially in the beginning of the 

study. The low sample size of our study imposes limitations on the generalizability of our results to 

different groups of riders. 

In this study, video coding was mainly performed by a single rater, and only some of the events were 

coded with the help of a second rater. Employing multiple raters would have made possible to 

provide information about the inter-rater and intra-rater reliability of the coding scheme used in this 

paper. Unfortunately, video coding is very time consuming and employing multiple raters makes this 

procedure even slower and pricier. Common limitations in naturalistic studies related to the methods 

of data acquisition is consistency in data quality and synchronization. This can affect the number of 

useable trials (braking events) that can be extracted (which may vary by individual). In our braking 
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event analysis, we only included subjects whose data provided a minimum number of braking events 

per bicycle type (see Table 4) to obtain a representative sample of their braking behavior. The events 

were analyzed by personnel blind to the hypothesis of the present research. In addition, upon check 

of the intra- rater reliability, both the type of bike and rider were blind to the rater and the sequence 

of events was randomized. 

The finding that each individual rider increased their probability of unplanned braking with e-bikes, 

provides confidence in the robustness of the data, despite the unequal sample sizes. Finally, 

generalizability will require further studies using larger sample sizes across different cultural 

infrastructural contexts which could alter results. For example, Gothenburg is characterized by an 

infrastructure with numerous cycle-lanes, cities like Utrecht in the Netherlands have a large network 

of cycle lanes frequently segregated and not shared with pedestrians and other cities like Brisbane 

in Australia have on-road, narrow and discontinuous cycling lanes where cyclists regularly share the 

space with motorists (Chataway, Kaplan, Nielsen, & Prato, 2014). 

4.5 Countermeasures 

The implications of our findings suggest certain countermeasures to guarantee safe use of e-bikes 

as they increase in popularity. To avoid involuntary high operating speed riding e-bikes, 

implementation of speed control interface or torque control system on e-bikes that increase the 

pedaling effort as speed increases or as speed limits are exceeded, would help to let the cyclist, not 

the e-bike, choose the speed. The risk of more abrupt deceleration with e-bikes points the need of 

equipping e-bikes with brake systems that improve the stopping power while maintaining stability, 

especially for wet conditions.  

In order to avoid underestimating speed issue due to similarities with t-bikes, distinctive design 

element on the front or side of the bike such as a special shape or light, or future cooperative warning 

systems running on smartphone (e.g., Gustafsson, Muñoz, Lindgren, Boda, & Dozza, 2013) or V2X 

communications exchanging data on vehicle type and speed could be implemented to alert other 

road users that e-bikes travel faster than t-bikes.  

A number of studies have found that cyclists lack necessary knowledge of traffic rules (Bai et al., 

2013; Langford et al., 2015; Lin et al., 2008). Thus, if e-bikes pose a higher risk of collision than t-
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bikes, education programs about road rules, rights and responsibilities, skill training or licensing 

requirements may provide solutions to improve cycling behavior and increase safety.   

Finally, with the expected increase of e-bike users in the coming years, the creation of wider cycle 

lanes would reduce the risks of collision due to bicycle traffic congestion. Wider cycle lanes would 

also reduce the risk during overtaking. However, if such a measure allowed e-bikes to travel even 

faster in cycle lanes frequently shared with pedestrians, e-bikes should be speed limited or 

alternatively circulate in a separated lane. 

5. Conclusions 

The results presented in this research are the first to evaluate with naturalistic studies the behavior 

of individual cyclists cycling on t-bikes and e-bikes. Our findings provide evidence that individual 

cyclist behavior and interactions with other road users change when cyclists switch from t-bikes to 

e-bikes. Riding an e-bike makes cyclists faster, and almost doubles the chance of having to perform 

an unplanned braking maneuver in response to a traffic conflict. Cyclists brake harder on e-bikes 

than on traditional bicycles, even when riding at the same speed, suggesting that e-bikes induce 

reactive (as opposed to pro-active) braking to avoid conflicts. Because of the higher speed and the 

more reactive behavior, e-cyclists may be at even higher risk of accident than traditional cyclists 

when visibility is limited (preventing planning) or if the path is narrow or obstructed (hindering 

overtaking maneuvers or requiring sudden avoidance maneuvers). Distracting activities, such as 

talking on a cellphone may also be particularly challenging for e-cyclists because of increased 

cognitive load, competing coordination tasks, and interference with visual scanning of the 

surroundings. The results of this study represents advancements in understanding of e-bike cycling 

behavior and offer new insights on the implications for traffic safety as a cycling community moves 

to e-bikes.  
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